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Abstract: Gait based gender classification is an emerging area in the field of biometrics that has received a lot of interest from 

researchers mainly due to its advantages over the other methods and its potential application. Gait based gender classification helps a 

vision based biometric analysis system by focusing the gender-unique features. This helps to improves the performance of the model 

by limiting the authentication database searching to only one gender. Through the years, researchers have tried a wide variety of 

techniques and their combinations to improve the accuracy of gait based biometric systems in varying use-cases. In this study, we have 

given a brief overview of some of the recent and pioneering works done in the field of gait-based gender classification. 

 

Index Terms: Gait, Biometrics, classification, gender, Gait cycle 

 

 

1.  Introduction 

    Every person in the world has physical features which are completely unique. These features can be used to determine a person’s 

identity and are known as biometric traits. The study of analyzing these traits for recognition is called biometrics.  In the recent years, 

with the increase in critical security issues like terrorism, a lot of focus has been put on biometric recognition. As a result, various 

biometric technologies have been developed to identify a person. These technologies analyze different features of a person like 

fingerprint, iris, palm prints, gait and sometimes a combination of two or more features [1,10,21]. 

    One of the newer and emerging areas of development is gait biometrics. Due to its unobtrusive nature, it has been considered as an 

ideal candidate by many researchers for the new mainstream security and recognition system. 

One of the newer and emerging areas of development is gait biometrics. Due to its unobtrusive nature, it has been considered as an ideal 

candidate by many researchers for the new mainstream security and recognition system. 

Gait is defined as the way or the manner in which a person walks. It’s not affected by a single part of body like arms, legs, hips, and 

shoulders, but rather it is a product of the relative movement of all of them. Almost all of the gait-based research approaches use videos 

as their dataset. This is because extracting required frames from the videos is easier and quicker than using images. It also allows to 

make use of temporal and spatial data which is not possible when working with images. However, most researchers prefer to only use 

spatial data [2,3,4,5,11,14,17,18,19,20,21,24]. 

The reason that gait biometrics is being touted as the emerging area in the area of biometric research is because of the advantages 

it holds over the existing biometric technologies: 

 A person’s gait is a behavioral trait, meaning that the components required to observe it are unobtrusive and can monitor gait 

from a distance. Other biometric technologies like facial recognition and fingerprint recognition require very close or physical 

contact to work. 

 Unlike facial and iris biometrics which require the images to be of a good resolution and the subject to look directly at the 

camera, gait patterns can be obtained even from low quality images. 

 A person’s gait is affected by multiple body characteristics, such as muscle activity, skeletal structure, and the length of the 

limbs. All these traits combined makes gait a very complex behavioral trait which make it very difficult to copy a person’s 

gait. This guarantees good security. 

 Despite the introduction of other factors such as injury or change in body weight, gait biometrics can still provide some degree 

of recognition. In comparison, commonly used biometrics like fingerprint fail to recognize the subject if an injury to the body 

part being scanned is introduced. 
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Another emerging use of biometric technologies is to determine the gender of a person. Gender of a person is a trait that plays a major 

role in all social interactions. Gender recognition is a very useful asset in making intelligent security and surveillance systems. It has 

many potential uses in everyday life, such as monitoring gender specific customer traffic. 

 

The Model-free approach for gait based classification, although being robust has a major shortcoming in the form of its accuracy being 

heavily dependent on the angle of the subject with respect to the imaging device. To address this problem, algorithms such as Support 

Vector Machines(SVM) and CNN have been used, but with limited success. While some approaches prove to be better than others, the 

overall accuracy when compared to model-based approach still lacks more research.  

 

2.  Methodology 

    Automatic gender recognition can be achieved by facial recognition, voice analysis and gait analysis. Gait based gender recognition 

has become an interesting choice for researchers as it can be detected at a distance, is non- contact and non-invasive as opposed to the 

other two techniques. There has been some astounding work in this area in the past [30] [31]. In some attempts for gait-based gender 

classification, motion trackers motion tracking equipment are fixed at the major joints of the subject’s body, and they were made to 

walk while wearing swimsuits [8]. This approach was unrealistic as in real life use, the subjects can’t be made to wear trackers.

  

Since the body structure of every person is different, the resultant gait also varies significantly. Saunders et. Al [27] in their research 

described human walking as “translation of center of mass of the body from one point to another in a way that requires the least energy”. 

This phenomenon is also called locomotion. They took into consideration five main constituents of human’s motion, i.e., pelvic tilt, 

pelvic rotation, knee and foot mechanisms, knee flexion and the motion of pelvis. Jeffrey E. boyd in 2005[28] described gait as a cyclic 

combination of coordinated movements. 

The process of walking is comprised of two phases. Swing and stance. A complete cycle which starts with swinging phase and 

ends with stance is called one stride. 

Gait Cycle:  Gait cycle is calculated by counting the amount of foreground pixels in the silhouettes in each individual frame 

captured with the silhouette in it. This number at its maximum when distance between the two legs is greatest (full stride stance) and 

reaches its minimum when the legs overlap in the frame. Two consecutive strides make one gait cycle. [29]. 

 

  
Figure. 1. Gait cycle [36] 

 

Cycle Time: It is the ratio of gait period to the frame rate. 

 Speed: It is the rate of the forward motion of the body usually measured as meters per second.  

Speed (m/sec) = Stride length (m) /cycle time (sec) 

Stride Length: It can be determined by the coordinates of the forward displacements of the gait signatures during one gait cycle. 

Gait-based classification is possible by two techniques: 

 Model based approach: In this approach the system extracts features by identifying main joints of the body responsible for 

movement. It maps the joint from points like head to pelvis, pelvis to the two legs. Using this data, it essentially models the 

movement of the subject to classify their gender. This approach is more accurate but requires the images to be high resolution 

else the accuracy of the system starts suffering. 

 Model free approach: In this system doesn’t model the individual joints of the subject as features, but it considers the entire 

silhouette of the person as a feature. This allows it be fairly robust, and the system can work even with lower quality images. 

However, it is prone to accuracy problems due to view variation of the person. 

 

 

3.  Literature Survey 

    Tarun Choubisa et al [6] attempted to identify the gender of a person while using complete side view angle images. They also focused 

on the classification of gait direction of a dog and a human using Convolutional Neural Network (CNN). In addition, the various aspects 

of their system’s CNN like the attention heat map, etc. can be visualized which gives some insight for the classification. It was found 

that in case of identification of females, the attention heatmap were continuous and concentrated. While in the case of identifying male 

subjects, the heatmaps were focused on lower region of legs, foot and wrists. Appropriate examples of heatmaps for both genders have 

been provided in Figures3 and Figure 4 respectively. The gender classification accuracy was found to be 93.3 % and the direction 

recognition accuracy was 94%. 
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Figure. 2. Visualization of CNN heatmap for women[6] 

 

 
 

Figure. 3.  Visualization of CNN heatmap for men.[6] 

 

    Mohammed Hussein Ahmed et al [12] presented his technique for gait-based gender classification based on the Kinect sensor. He 

also designed a model based on dynamic features called DDF(Dynamic Distance Feature). Kinect sensor was used as it could provide 

the skeletal view of subjects while tracking 20 joints of the body. The sensor then provides X-axis and Y-axis position of all joints. This 

gave the researchers 40 attributes for each subject which allowed them to create Dynamic Distance Features. An example of the DDF 

based model is shown in Fig. 4. Classifiers like LDC(Linear Discriminant Classifier), SVM(Support Vector Machine) and NN(Nearest 

Neighbor) were also used separately. The experiments were done with their own dataset therefore it is not possible to compare its 

accuracy with other researchers’ approaches. It was observed that among the three classification techniques, KNN classifier achieved 

the highest classification accuracy. The gender classification accuracies achieved by SVM(Support Vector Machine), LDC(Linear 

Discriminant Classifier) and Nearest Neighbor (NN) were 90%, 91.1% and 96.7 % respectively. 

 
 

Figure. 4. Dynamic Distance Feature [12] 

 

    Mustafa Eren Yildirim1 et al [13] worked upon gender prediction problems encountered in working on a 3D space. In his research, 

horizontal, Vertical and depth-based coordinates of 20 distinct joints of walking subjects were acquired using Kinect sensor. In the next 

step absolute difference between mean values of class features for male and female was calculated. This means that for each subject 60 

attributes were acquired. Work and benchmarking was done with genetic algorithm with taking samples from an open source dataset 

from UPCV. Gait was captured with help of Microsoft Kinect, which consisted of 5 gait samples from thirty people. The research made 

use of a multilayer Perceptron for training, and testing purposes. The approach achieved higher degree of performance with lesser 

computation times [13]. 

    Lei Cai et al [14] in his research emphasized on the issue that gender classification in real life scenarios was challenging because 

many external factors such as view variations, arbitrary shapes of the pedestrians, etc. were also incorporated in the images. To address 

this, they developed a Multi-aspect Joint Learning Network or MJLN which reflects the influence of the pedestrian understanding to 

the identification of the pedestrian’s gender. After receiving inputs, their system simultaneously performed gender learning and view 

learning. For the research pedestrian databases from multiple sources were used, namely VIPeR, CUHK, PRID, GRID and MIT. It was 

found that their proposed system was very effective and even performed better than some state-of-the-art systems. Table I provides a 

comparison of the performance of their system against other approaches in two metrics, i.e., Mean Accurate Predictions (MAP) and 

Area Under ROC Curve (ROC). 

 
Table. 1. Comparing Performance of MJLN against other techniques 
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    The work done by Sneha Choudhary et al [17] consists of four stages. Every silhouette image in a gait cycle for individual subjects 

are first normalized and then averaged. By making use of the principal component analysis, the size of resultant GEI image is also 

reduced. Five key spatial factors i.e., speed, gait, cadence, posture period length, height are then computed from the reduced GEI Image. 

In the final step the resultant parameters are concatenated to the GEI image. The attained feature vector set was trained and tested using 

the SVM (Support Vector Machine) and ANN (Artificial Neural Network). The Extreme accuracy that was attained was 98.16% which 

is slightly better than other approaches. 

 

    Jiwen Lu, et. Al in 2012 [39] investigated the issue with gait based gender determination in unconstrained environments. They 

calculated Average Gait Image (AGI) for individual groups and then trained the system to get a distance at which intra class variations 

are minimum and interclass variations are maximum. It was to make sure that more amount of information could be extracted which 

would improve accuracy. The table below compares jiwen lu’s metric learning methods with other methods. 

 
Table. 2. Comparing Performance against other techniques 

 
    Maodi Hu et. al [43] made a novel attempt for gender classification which improves robustness of the system towards segmental 

noise and also provided a way to remove the external factors such as wearing clothing and carrying objects. They used CASIA gait 

database(B) for obtaining the samples. The table provided below compares the Correct Classification Rate (CCR) or the accuracy of 

their approach with other approaches. 

 

 

 
Table. 3. Comparing Performance against other techniques 

 

 
    Zhang De[16] proposed an approach in which he attempted to classify the gender of a person by analyzing a multiple view fusion of 

the subject’s gait. First, video inputs from four different viewpoints are used to create Gait Energy Images (GEI). The GEI and camera 

images are fused together to form a third order tensor of the form (x,y,view). Then all views are integrated by reducing the dimensionality 

of the tensor objects using Multi-linear Principal Component Analysis (MPCA). The research uses the CASIA gait database. The results 

demonstrated the effectiveness of MPCA based feature fusion achieved a Correct Classification Rate(CCR) of 98.1 %. The table 4 

below shows the comparison of CCR of different viewing angles and the CCR of the fused result. Table 5 compares the CCR of the 

approach with other approaches. 
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Table. 4. CCR of gender recognition using SVM with linear kernel 

 

 
 

 
Table. 5. Comparing performance against other approaches 

 

 
 

    Huang and Wang[45] proposed an approach for creating a robust gait-based gender classification system. Their research made use 

of Support Vector Machine(SVM) and Probabilistic Neural Network(PNN) while working on CASIA gait database (B). They 

extracted the features on the basis of anatomical division and binary moments. They considered 26 parameters in total and the 

irrelevant features were removed. Experimental results showed that their approach achieved 100% accuracy when compared to other 

research making use of same gait database. The below table shows the comparison of their research results. 

 
Table. 6. Comparing performance against other approaches 

 

s  

4.  Conclusion and Future work  

    As seen in the literature survey, some algorithms and extraction techniques provide a better result than others. Using Gait Energy 

Image (GEI) for image extraction is an excellent alternative to other simpler methods. In the case of classification algorithms, Artificial 

neural networks and CNN produce much better results than algorithms like Support Vector Machine (SVM) and Linear Discriminant 

Classifier (LDC). Using this knowledge, systems using such algorithms can be designed to produce gait based classification systems 

which show excellent results despite variations in angle of subjects. Table 7 below provides a condensed comparison of the accuracies 

of the works discussed. 
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Table. 7.  Collective Comparison of performance  

 

 

 
 

 

References 

[1] X. Qinghan, “Technology review – Biometrics Technology, Application, Challenge, and Computational Intelligence Solutions”, IEEE 

Computational Intelligence Magazine, vol. 2, pp. 5-25, 2007. 

[2] Jin Wang, Mary She, Saeid Nahavandi, Abbas Kouzani, “A Review of Vision-based Gait Recognition Methods for Human Identification”, IEEE 

Computer Society, 2010 International Con-ference on Digital Image Computing: Techniques and Applications, pp. 320 - 327, 2010  

[3] N. V. Boulgouris, D. Hatzinakos, and K. N. Plataniotis, “Gait recognition: a challenging signal processing technology for biometric 

identification”, IEEE Signal Processing Magazine, vol. 22, pp. 78-90, 2005.  

[4] M. S. Nixon and J. N. Carter, "Automatic Recognition by Gait", Proceedings of the IEEE, vol. 94, pp. 2013-2024, 2006.  

[5] Y. Jang-Hee, H. Doosung, M. Ki-Young, and M. S. Nixon, “Automated Human Recognition by Gait using Neural Network”, in First Workshops 

on Image Processing Theory, Tools and Applications, 2008, pp. 1-6 

[6] Tarun Choubisa, Mohan Kashyap, Rithesh R N, Sampad B. Mohanty, “Direction and Gender Classification Using Convolutional Neural Network 

for Side-view Images Captured from a Monitored Trail,” Indian Institute of Science, Bengaluru- 978-1-5090-6734-3/17/$31.00 2017 IEEE 

[7] N. V. Boulgouris, D. Hatzinakos, and K. N. Plataniotis, “Gait recognition: a challenging signal processing technology for biometric 

identification”, IEEE Signal Processing Magazine, vol. 22, pp. 78-90, 2005 

[8] N. F. Troje, “Decomposing biological motion: A framework for analysis and synthesis of human gait patterns,” J. Vis., vol. 2, no. 5, pp. 371–

387, 2002 

[9] K. Weinberger, J. Blitzer, and L. Saul. Distance metric learning for large margin nearest neighbor classification. In NIPS, 2005. 

[10] Edward WONG Kie Yih, G. Sainarayanan, Ali Chekima, "Palmprint Based Biometric System: A Comparative Study on Discrete Cosine 

Transform Energy, Wavelet Transform Energy and SobelCode Methods", Biomedical Soft Computing and Human Sciences, Vol.14, No.1, 

pp.11- 19, 2009  

[11] Dong Xu, Shuicheng Yan, Dacheng Tao, Stephen Lin, and Hong-Jiang, Marginal Fisher Analysis and Its Variants for Human Gait Recognition 

and Content- Based Image Retrieval, IEEE Transactions On Image Processing, Vol. 16, No. 11, November 2007 

[12] Mohammed Hussein Ahmed, Azhin Tahir Sabir, “Human Gender Classification based on Gait Features using Kinect Sensor,” Koya University 

Kurdistan Region of Iraq- 978-1-5386-2201-8/17/$31.00 2017 IEEE 

[13] Mustafa Eren Yildirim1,Omer Faruk Ince, Ibrahim Furkan Ince, JangSik Park, Byung-Woo Yoon, “Application of Maximized Inter-class 

Variance for Gender Classification using RGB-Depth Camera,” Bahcesehir University, Istanbul, Turkey - 978-89-93215-13-7/17/$31.00 2017 

ICROS 

[14] Lei Cai, Huanqiang Zeng, Jianqing Zhu, Jiuwen Cao, Junhui Hou, and Canhui Cai, “Multi-View Joint Learning Network For Pedestrian Gender 

Classification,” The City University of Hong Kong.- 978-1-5386-2159- 2/$31.00 2017 IEEE 

http://www.jetir.org/


© 2022 JETIR April 2022, Volume 9, Issue 4                                                                  www.jetir.org (ISSN-2349-5162) 

JETIR2204535 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org f269 
 

[15] Maodi hu, Y. wang, Z. Zhang and D. Zhang,” Gait-based gender classification using mixed conditional random field”, IEEE transactions on 

systems, man and cybernetics-Part B: Cybernetics 41(5):1429-1439,2011 

[16] [Zhang De, Research on Gait based Gender Classification via Fusion of Multiple Views, International Database of Database Theory and 

Application,2015 

[17] Sneha Choudhary, Chandra Prakash, and Rajesh Kumar, “A Hybrid Approach for Gait based Gender Classification using GEI and Spatio 

Temporal parameters,” 978-1-5090-6367-3/17/$31.00 2017 IEEE 

[18] Xuelong Li, Stephen J. Maybank, Shuicheng Yan, Dacheng Tao, and Dong Xu, Gait Components and Their Application to Gender Recognition, 

IEEE Transactions On Systems, Man, And Cybernetics— Part C: Applications And Reviews, Vol. 38, No. 2, March 2008 

[19] Shiqi Yu, , Tieniu , Kaiqi Huang, Kui Jia, Xinyu Wu, A Study on Gait-Based Gender Classification, IEEE Transactions On Image Processing, 

Vol. 18, No. 8, August 2009 

[20] M.Hanmandlu, R.Bhupesh Gupta, Farrukh Sayeed, A.Q.Ansari, An Experimental Study of different Features for Face Recognition, International 

Conference on Communication Systems and Network Technologies, 2011 

[21] Rosa Asmara, Achmad Basuki, Kohei Arai, A Review of Chinese Academy of Sciences (CASIA) Gait Database As a Human Gait Recognition 

Dataset, published in the Industrial Electronics Seminar 2011, Surabaya Indonesia 

[22] Suvarna S., Shah, K., “LITERATURE REVIEW: MODEL FREE HUMAN GAIT RECOGNITION”, 978-1-4799-3070-8/14 $31.00 © 2014 

IEEE 

[23] Nidhi M. Bora, Gajendra V. Molke, Hemant R. Munot, “Understanding Human Gait: A Survey of Traits for Biometrics and Biomedical 

Applications”, 5 International Conference on Energy Systems and Applications,2015 

[24] J. B. dec. M. Saunders, V. T. Inman and H. D. Eberhart, “The Major Determinants in Normal and Pathological Gait,” The Journal of Bone and 

Joint Surgery, Vol. 35-A, No. 3, 1953, pp. 543-558. 

[25] Jeffrey E. Boyd, James J. Little, “Biometric Gait Recognition”, Springer-Verlag Berlin Heidelberg, pp. 19–42, 2005 

[26] J. H. Yoo., “Feature Extraction and Selection for Recognizing Humans by Their Gait”, Springer-Verlag Berlin Heidelberg 2006. 

[27] L. T. Kozlowski and J. E. Cutting, “Recognizing the sex of a walker from a dynamic point-light display,” Percpt. Psychophys., vol. 21, pp. 575–

580, 1977. 

[28] J. W. Davis and H. Gao, “Gender recognition from walking movements using adaptive three-mode PCA,” in Proc. Conf. Computer Vision and 

Pattern Recognition Workshop, Washington, DC, 2004, vol. 1, p. 9. 

[29] L. R. Sudha & R. Bhavani (2013) AN EFFICIENT SPATIO-TEMPORAL GAIT REPRESENTATION FOR GENDER CLASSIFICATION, 

Applied Artificial Intelligence, 27:1, 62-75, DOI: 10.1080/08839514.2013.747373 

[30] Bogdan Pogorelc, Matjaž Gams, Medically Driven Data Mining Application: Recognition of Health Problems from Gait Patterns of Elderly, 

IEEE International Conference on Data Mining Workshops, 2010 

[31] Seungsuk Ha, Youngjoon Han, Hernsoo Hahn, Adaptive Gait Pattern Generation of Biped Robot based on Human’s Gait Pattern Analysis, World 

Academy of Science, Engineering and Technology 34 2007 

[32]  Jiwen Lu, 1, Gang Wang, Thomas S. Huang, “Gait-Based Gender Classification in Unconstrained Environments”, 21st International Conference 

on Pattern Recognition, 2012 

[33] Chandrakant P. Divate, Dr. Syed Zakir Ali, “Study of Different Bio-metric Based Gender Classification Systems”, Proceedings of the 

International Conference on Inventive Research in Computing Applications,2018 

[34] K. Weinberger, J. Blitzer, and L. Saul. Distance metric learning for large margin nearest neighbor classification. In NIPS, 2005. 

[35]  J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon. Information-theoretic metric learning. In ICML, pages 209–216, 2007 

[36]  Maodi Hu, Yunhong Wang, Zhaoxiang Zhang, Yiding Wang, “Combining Spatial and Temporal Information for Gait Based Gender 

Classification”, International Conference on Pattern Recognition, 2010 

[37]  L.Lee and W.E.L.Grimson. Gait analysis for recognition and classification. In AFGR, pages 148–155, 2002. [6] L. R. Rabiner. A tutorial on 

hidden markov models and selected applications in speech recognition. Proc. IEEE, 77(7):1169–1179, July 1988 

[38]  G. Huang and Y. Wang. Gender classification based on fusion of multi-view gait sequences. In ACCV, pages 462–471, 2007 

[39] G. Antipov, S. Berrani, N. Ruchaud, and J. Dugelay, “Learned vs. hand-crafted features for pedestrian gender recognition,” in Proceedings of 

the 23th ACM International conference on Multimedia, 2015, pp. 1263–1266. 

[40] [ K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014. 

[41] [ C. Szegedy, W. Liu, and Y. Jia, “Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, 2015, pp. 1–9 

[42]  K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern 

Recognition, 2016, pp. 770–778. 

[43]  L. Cai, J. Zhu, H. Zeng, J. Chen, C. Cai, and K. K Ma, “Hog-assisted deep feature learning for pedestrian gender recognition,” Journal of the 

Franklin Institute, 2017, doi: 10.1016/j.jfranklin.2017.09.003. 

Satyam Rawat, born on June 7, 2000 is a student of final year of M.Tech in Computer Science from Lovely Professional University, 

Phagwara, Punjab. His area of research is Soft computing, Biometrics and Image Processing.   

 

http://www.jetir.org/

